Суперкомпьютеры: титаны вычислений

Эти сверхмашины могут выполнять сложнейшие задачи и по своим характеристикам превосходят большинство компьютеров, с которыми мы сталкиваемся в обычной жизни. И хотя суперкомпьютеры до сих пор кажутся чем-то далеким, мы все чаще пользуемся результатами их работы: от поиска в интернете и прогнозов погоды до новейших лекарств и самолетов.

В 2019 году холдинг «Росэлектроника» создал новый суперкомпьютер «Фишер» для Российской академии наук. Разработка Ростеха поможет физикам в решении задач молекулярной динамики. Рассказываем о том, что такое супер-ЭВМ и где они применяются.

Супер-ЭВМ: квадриллион операций в секунду

Точного определения, что такое «суперкомпьютер», не существует. Компьютерная индустрия находится в постоянном развитии, и сегодняшние супермашины завтра уже будут далеко позади. Можно сказать, что суперкомпьютер – это очень мощный компьютер, который способен обрабатывать гигантские объемы данных и производить сложнейшие расчеты. Там, где человеку для вычислений нужны десятки тысяч лет, суперкомпьютер обойдется одной секундой. И если в 1980-х суперкомпьютером в шутку предлагали называть любые ЭВМ, весящие более тонны, то сегодня они чаще всего представляют собой большое количество серверных компьютеров с высокой производительностью, объединенных высокоскоростной сетью.

Современный суперкомпьютер – это огромное устройство, состоящее из модулей памяти, процессоров, плат, объединенных в вычислительные узлы, связанные между собой сетью. Управляющая система распределяет задания, контролирует загрузку и отслеживает выполнение задач. Системы охлаждения и бесперебойного питания обеспечивают беспрерывную работу супер-ЭВМ. Весь комплекс может занимать значительные площади и потреблять огромное количество энергии.

Производительность суперкомпьютеров измеряется во флопсах – количестве операций с плавающей запятой, которые система может выполнять в секунду. Так, например, один из первых суперкомпьютеров, созданный в 1975 году американский Cray-1, мог совершать 133 миллиона операций в секунду, соответственно, его пиковая мощность составляла 133 мегафлопс. А самый мощный на июнь 2019 года суперкомпьютер Summit Ок-Риджской национальной лаборатории обладает вычислительной мощностью 122,3 петафлопс, то есть 122,3 квадриллиона операций в секунду.

Существует международный рейтинг топ-500, который с 1993 года ранжирует самые мощные вычислительные машины мира. Данные рейтинга обновляются два раза в год, в июне и ноябре. В 2019 году в первую десятку входят суперкомпьютеры США, Китая, Швейцарии, Японии и Германии. Единственный отечественный суперкомпьютер в первой сотне рейтинга − «Ломоносов-2» из Научно-исследовательского вычислительного центра МГУ производительностью 2,478 терафлопс, занявший в июне 2019 года 93-е место.

Чтобы определить мощность суперкомпьютера, или, как его еще называют в английском языке, «числодробилки» (number cruncher), используется специальная тестовая программа, которая предлагает машинам решить одну и ту же задачу и подсчитывает, сколько времени ушло на ее выполнение.

Что могут «числодробилки»

Первые суперкомпьютеры создавались для военных, которые применяли их в разработках ядерного оружия. В современную цифровую эпоху сложные вычисления требуются во многих областях человеческой деятельности. Суперкомпьютеры незаменимы там, где применяется компьютерное моделирование, где в реальном времени обрабатываются большие объемы данных и где задачи решаются методом простого перебора огромного множества значений. «Числодробилки» работают в статистике, криптографии, биологии, физике, помогают предсказывать погоду и глобальные изменения климата.

С развитием информационных технологий и применением их на практике появились новые направления на стыке информатики и прикладных наук – вычислительная биология, вычислительная химия, вычислительная лингвистика и многие другие. Суперкомпьютеры используются для создания искусственных нейросетей и искусственного интеллекта.

Именно сверхмощным компьютерам мы обязаны появлением точных прогнозов погоды. Суперкомпьютеры совершили революцию в медицине, в частности – в диагностике и лечении рака. С их помощью обрабатываются миллионы диагнозов и историй болезней, выявляются новые закономерности развития заболевания и вырабатываются новые способы лечения. Сверхумные машины применяются для расчета химических соединений, на основе которых изготавливаются новые лекарства. Масштабные расчеты помогают в сферах, связанных с проектированием: строительстве, машиностроении, авиастроении и других.

Суперкомпьютер с «бесконечным» масштабированием

В эпоху цифровой экономики и всеобщей цифровизации вычислениям отводится ключевое место. На создание суперкомпьютеров крупнейшие государства выделяют многомиллионные суммы. Эти вложения должны быть постоянными, так как производительность суперкомпьютеров удваивается каждые полтора года. Сегодня Россия находится только в начале построения национальной сети сверхмощных машин.

Структуры Ростеха в числе прочих российских предприятий вносят свой вклад в создание отечественной киберинфраструктуры. В сентябре 2019 года холдинг «Росэлектроника» объявил о запуске суперкомпьютера «Фишер» с пиковой производительностью 13,5 Тфлопс и практически неограниченными возможностями для масштабирования. Машина разработана специалистами холдинга для Объединенного института высоких температур Российской академии наук (ОИВТ РАН). Новый суперкомпьютер поможет ученым-физикам в создании цифровых моделей веществ и прогнозе поведения материалов в экстремальных состояниях.

Суперкомпьютер «Фишер» состоит из 24 вычислительных узлов с 16-ядерными процессорами. Для улучшения терморегуляции вычислительного кластера «Фишера» используется иммерсионная (погружная) система охлаждения. Благодаря ей суперкомпьютер не требует специально оборудованных помещений и может работать при температурах от ‒50 °С до +50 °С. Подобные системы охлаждения применяются сегодня на самых высокопроизводительных машинах мира.

«Фишер» создан на основе коммуникационной сети «Ангара» − первого российского интерконнекта, позволяющего объединять группы машин в мощные вычислительные кластеры. С помощью «Ангары» можно соединять тысячи компьютеров разных производителей и с разной архитектурой центральных процессоров. Коммутаторное исполнение «Фишера» позволяет компоновать компьютеры с большей плотностью и в целом облегчает сборку и использование всей системы за счет уменьшения числа кабелей. Модульный характер системы позволяет масштабировать мощность «Фишера» под любые нужды.

Ученые из ОИВТ РАН уже несколько лет используют суперкомпьютер DESMOS мощностью 52,24 Тфлопс, созданный на базе предыдущего поколения сети «Ангара». Его вычислительные мощности оказались настолько востребованы, что было принято решение о создании «младшего брата» этого суперкомпьютера уже на базе нового поколения коммутационной сети.

Источник | фото